Topological Quantum Computation
§1.1 Quantum Bit and Elementary Operations
The "qubit" is defined as a linear
superposition of two arthogonal quantum
states
$$10> = \binom{1}{0}$$
 and $11> = \binom{0}{1}$:
 $14> = \alpha |0> + \beta |1>$
with $\alpha_1 \beta \in C$ satisfying $k|^2 + |\beta|^2 = 1$
 $\rightarrow \alpha = \cos \frac{\alpha}{2}$, $\beta = e^{i\phi} \sin \frac{\alpha}{2}$
His $\frac{1}{2}$
His $\frac{1}{2}$
His $\frac{1}{2}$
Bloch sphere

Time evolution is given in terms of
unifary operators. Pauli operators:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$$

$$Z = eigenstates: 10>, 11>$$

$$11> = X | 0>, | 0> = X | 1> \quad "spin flip"$$

$$X = eigenstates:$$

$$1+2 = \frac{10>+11>}{12}, \quad 1-3 = \frac{10>-11>}{12}$$

$$Y = eigenstates:$$

$$1+i> = \frac{10>+11>}{12}, \quad 1-i> = \frac{10>-11>}{12}$$

$$Hadamard and phase S operators:$$

$$H = \frac{1}{12} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$H : \{ 10>, 11>\} \iff \{ 1+i>, 1-i\} \}$$

Mixed state can be represented as
a point inside the Bloch sphere

$$(r_x, r_y, r_z) = (Tr[XP], Tr[YP], Tr[ZP])$$

For a pure state $h_x > = \cos \frac{\theta}{2} |_0 > + e^{i\phi} \sin \frac{\theta}{2} |_D$,
the coordinates are
 $(r_x, r_y, r_z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
§ 1.2 The Soloway-Kitaev algorithm
Zet us define an "instruction set"
Definition 1:
An instruction set g for a d-dimensional
qudit is a finite set of quantum gates satisfying:
1) All gates ge g are in su(d)
2) For ge g \longrightarrow gt e g also
3) g is a "universal" set for su(d), i.e. the
group generated by g is dense in $su(d)$.
This means: given Ue $Su(d), z > 0$ \exists
 $S = g, \dots, g_m$ with $g_i \in g$ such that $IU-SII < z$

In the above, a sequence of instructions
generating a unitary operation S is an
"
$$\varepsilon$$
-approximation" to U if
 $d(U,S) \equiv ||U-S|| \equiv \sup_{\|V\|=1} ||U-S|| + |< \varepsilon|$
Example 1:
Define the " $\frac{\pi}{8}$ -gate" $T = e^{i\Re} \left(e^{-i\Re} \right)$
 \rightarrow the set $\{H, T\}$, i.e. the Hadquards
and $\frac{\pi}{8}$ -gates, is an instruction set
for SU(2) (will show later).
Question:
Given an instruction set, G, how may
we approximate an arbitrary quantum
gate with a sequence of instructions
from G most efficiently ?
 \rightarrow "quantum compilation"
Theorem 1 (Solovay-Kitaev):
Zet G be an instruction set for SU(d),
and let ε so be given. Then $\exists c > 0$ s.t.
 \forall $U \in SU(d)$: \exists finite sequence SCG

means finding a basic
$$\varepsilon_{0}$$
-appr.
to U.
-> can be implemented by storing
a large number of instruction
sequences from \mathcal{G} .
At higher levels of recursion we have
else
Set $U_{n-1} = Solovay - Kitaev(U_{1}u-1)$
returns $\varepsilon_{n-1} - appr.$ U_{n-1} to U
Define $\Delta = UU_{n-1}^{t}$
 $\rightarrow II\Delta - III < \varepsilon_{n-1}$
then decompose
 $\Delta = VWVtWt$, (will show later)
with $d(I,V), d(I,W) < c_{qc} t\varepsilon_{n-1}$
Set $V, W = GC - D$ acompose (UU_{n-1}^{t})
In the next step approximate V and W
to order ε_{n-1} :
Set $V_{n-1} = Solovay - Kitaev(V_{1}u-1)$
Set $W_{n-1} = Solovay - Kitaev(W_{1}n-1)$

It turns out
$$\|\Delta - V_{n-1}W_{n-1}V_{n-1}\| < \varepsilon_n$$

where $\varepsilon_n = C_{appr} \varepsilon_{n-1}^{3/2}$
for $\varepsilon_{n-1} < \frac{1}{C_{appr}} \longrightarrow \varepsilon_n < \varepsilon_{n-1}$
 $\rightarrow \varepsilon_o < \frac{1}{C_{appr}}$ (will show $\varepsilon_o < \frac{1}{32}$)
The algorithm concludes by returning
Return $U_n = V_{n-1}V_{n-1}V_{n-1}^{\dagger}W_{n-1}^{\dagger}U_{n-1}$;